From density-matrix renormalization group to matrix product states
نویسنده
چکیده
In this paper we give an introduction to the numerical density matrix renormalization group (DMRG) algorithm, from the perspective of the more general matrix product state (MPS) formulation. We cover in detail the differences between the original DMRG formulation and the MPS approach, demonstrating the additional flexibility that arises from constructing both the wavefunction and the Hamiltonian in MPS form. We also show how to make use of global symmetries, for both the Abelian and non-Abelian cases.
منابع مشابه
Variational optimization algorithms for uniform matrix product states
We combine the Density Matrix Renormalization Group (DMRG) with Matrix Product State tangent space concepts to construct a variational algorithm for finding ground states of one dimensional quantum lattices in the thermodynamic limit. A careful comparison of this variational uniform Matrix Product State algorithm (VUMPS) with infinite Density Matrix Renormalization Group (IDMRG) and with infini...
متن کاملDensity-matrix renormalization group algorithms
The Density Matrix Renormalization Group (DMRG) was developed by White [1, 2] in 1992 to overcome the problems arising in the application of real-space renormalization groups to quantum lattice many-body systems in solid-state physics. Since then the approach has been extended to a great variety of problems in all fields of physics and even in quantum chemistry. The numerous applications of DMR...
متن کاملMatrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In t...
متن کاملContinuous matrix product states for quantum fields.
We define matrix product states in the continuum limit, without any reference to an underlying lattice parameter. This allows us to extend the density matrix renormalization group and variational matrix product state formalism to quantum field theories and continuum models in 1 spatial dimension. We illustrate our procedure with the Lieb-Liniger model.
متن کاملSe p 19 95 Corner Transfer Matrix Renormalization Group Method
We propose a new fast numerical renormalization group method, the corner transfer matrix renormalization group (CTMRG) method, which is based on a unified scheme of Baxter's corner transfer matrix method and White's density matrix renormalization group method. The key point is that a product of four corner transfer matrices coincides with the density matrix. We formulate the CTMRG method as a r...
متن کامل